
[jml52D»

REPORT DOCUMENTATION PAGE Form Approved
0MB No. 0704-0188

Public reportinn burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
aathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Papenwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

7.Jul.04
3. REPORT TYPE AND DATES COVERED

MAJOR REPORT
4. TITLE AND SUBTITLE
SERVICE CONTINUITY IN NETWORKED CONTROL USING ETHERWARE

6. AUTHOR(S)

CAPT GRAHAM SCOTT R

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

UNIVERSITY OF ILLINOIS AT URBANA

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

THE DEPARTMENT OF THE AIR FORCE
AFIT/CIA, BLDG 125
2950 P STREET
WPAFB OH 45433

11. SUPPLEMENTARY NOTES

5. FUNDING NUMBERS

8. PERFORMING ORGANIZATION
REPORT NUMBER

CI04-418

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

12a. DISTRIBUTION AVAILABILITY STATEMENT

Unlimited distribution ni«^TRlBUT10N STATEl\flEMT ^
In Accordance With AFI 35-205/AFIT Sup4*^J f^J^^^^ ^^^ public Release

Distribution Unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

20040720 077
_y

14. SUBJECT TERMS

17 SECURITY CLASSIFICATION
OF REPORT

18. SECURITY CLASSIFICATION
OF THIS PAG6 '/-■

19. SECURITY CLASSIFICATION
OF ABSTRACT

Best Available Co[Spi

15. NUMBER OF PAGES

20
16. PRICE CODE

20. LIMITATION OF ABSTRACT

,nclard Form 298 (Rev. 2-89) (EG)
fcribed by ANSI Std. 239.18
igned using Perform Pro, WHS/DIOR, Get 94

THE VIEWS EXPRESSED IN THIS ARTICLE ARE
THOSE OF THE AUTHOR AND DO NOT REFLECT
THE OFFICIAL POLICY OR POSITION OF THE
UNITED STATES AIR FORCE, DEPARTMENT OF
DEFENSE, OR THE U.S. GOVERNMENT.

Service Continuity in Networked Control using
Etherware

Girish Baliga, Scott Graham, Lui Sha, and P. R. Kumar

University of Illinois at Urbana-Champaign, IL 61801, USA
{gibaliga, srgraham, Irs ,prkimiar}auiuc. edu

Abstract. Service continuity is the capability to provide persistent and
reliable service, with graceful degradation in the presence of changes. We
contend that the implicit need for such a capability is the primary driver
of middleware efforts today. This is particularly important for networked
control systems interacting with the real world, as they have strict safety
requirements. Such systems have to tolerate numerous changes, such as
component faults, node failures, and software upgrades, while maintain-
ing operational integrity.
We focus on providing service continuity for networked control systems.
The various changes in such systems are classified and illustrated using
our traffic control testbed. We then describe how Etherware, our middle-
ware for networked control, handles these changes. Insights into co-design
of Etherware, in conjunction with an implementation of our testbed, are
presented. The ability of Etherware to provide service continuity, and
the associated performance, is demonstrated through illustrative exper-
iments.

Key words: Service continuity, networked control, distributed real-time,
component management, fault tolerance, Etherware.

1 Introduction

The ability to tolerate changes is a fundamental quality of a sustainable dynamic
system. The useful lifetime of a system is determined to a large extent by its
ability to respond to changes in its operating conditions. However, it is imprac-
tical to anticipate all such changes before a system is deployed. Instead, systems
are often designed to be able to evolve and dynamically adapt to changes in
their operating conditions. Software systems are particularly malleable due to
the "program as data" concept introduced by the Von Neumann architecture.
Indeed, systems software such as operating systems and middleware have been
developed to manage application software. This is the basis of most dynamically
evolvable software systems today.

Large distributed apphcations are typically developed as networks of coordi-
nating components using middleware. Component life-cycles are managed using
service interfaces provided by the middleware. Components also provide services
to each other, and this forms the basis of their interaction. In essence, each com-
ponent interacts with the rest of the system by providing and consuming services.

'ISTRIBUTIOM STATEiyiEMT A
Approved for Public Release

Distribution Unlimited ,

However, changes in operating conditions may cause some of these services to
be affected. Since components usually depend on the availability of services for
proper operation, it becomes necessary to continue to provide some service, even
in the presence of changes. Hence, service continuity is a key requirement that
needs to be addressed for the sustainability of such applications.

Key innovations in middleware promote service continuity in various ways.
Publish-subscribe niiddleware {[14], [4]) permits servers to be changed without
clients having to monitor these changes. Adaptive and reflective middleware ([3],
[11]) allows components to modify system configuration, and change their own
behavior, while still maintaining service to their clients. Aspect-oriented middle-
ware ([7], [15]) promotes separation of concerns. Aspects addressing a concern
such as security, can be added to or removed from component structures, with-
out affecting the services that they provide. Middleware for mobile computing
([13]) addresses continuity of service even during component mobility and sys-
tem reconfiguration. Thus, much of current research in middleware focuses on
maintaining service continuity during change.

Our focus is on networked control systems, which are composed of sensors, ac-
tuators, and computers that coordinate over a network, to control a distributed
real-time system. Such systems represent a convergence of control with com-
munication and computing, and constitute a logical next step in the evolution
of networked systems such as the Internet. Since these systems directly inter-
act with the real world, they are subject to drastic and often unpredictable
changes. The systems have to preserve operational integrity in the presence of
such changes. The concept of operational integrity captures key non-functional
requirements such as safety, availability, and robustness for such systems. To
address this, we present Etherware - a middleware for networked control, which
we have developed in the IT Convergence Lab at the University of Illinois.

This paper makes three main contributions. First, the notion of operational
mtegrity for networked control is developed, and the main challenges to main-
tain it are identified. Service continuity is shown to be the key requirement in
middleware to support operational integrity for such systems. Second, several
middleware issues involved in operational integrity are identified, their influence
on the design of Etherware is considered, and its support for service continuity
is detailed. A key contribution is the ability to maintain communication chan-
nels during component restarts. Finally, a traffic control testbed developed using
Etherware is described, and experiments on performance of service continuity
for this application are presented.

The presentation is organized as follows. Section 2 defines operational in-
tegrity for networked control, and presents key challenges involved. Section 3
addresses the importance of service continuity, middleware design issues, and
choices for Etherware. The programming model of Etherware, its architecture,
and details about its support for service continuity, are presented in Section 4. A
description of our traffic control testbed is provided in Section 5, followed by a
presentation of co-design of our application and features in Etherware. Details of
experiments to test the support for service continuity in Etherware, are provided

in Section 6. Our contributions are placed in the context of related research in
Section 7, and Section 8 concludes.

2 Operational Integrity in Networked Control

This section introduces the notion of operational integrity for networked con-
trol systems. The various changes in such systems are classified. The ability to
tolerate such changes is presented as a key challenge in maintaining operational
integrity for such systems.

REAL WORLD ». Plant
1

T
Interface Actuators Sensors

Controller
<:nBTWAPP

GOALS

Fig. 1. Schematic of a networked control system

2.1 Operational Integrity

Networked control software interacts with a distributed real-time system, usually
called a plant. Sensors provide feedback about the plant behavior. This sensor
feedback is used by computers running control programs to generate actuator
commands that accomplish desired goals. Actuators implement these commands
to control the plant. As shown in Figure 1, sensors and actuators constitute
the interface between the software and the real world. Also, the controller is
typically implemented as a set of software components operating over a network
of computers.

The goals provided to the controller specify the objectives to be achieved
during plant operation. An important part of these goals is a set of safety cri-
teria that ensure that the plant operates in a "safe" region. For example, in a
traffic control system, a safety criterion would be to maintain a given separation
distance between any two cars. This would ensure that there are no collisions
between cars. In general, safety criteria depend on specific applications and are
usually part of the system specification.

We now define these notions more precisely. The set of variables used to model
a plant is called its state vector, and the variables are called its state variables.
The values of state variables of a plant, at a given point in time, represent its

state. The set of values that the state space variables of a plant can take, is
called its state space. The safe state space of a plant, at a given point in time,
is the subset of its state space that is specified by the set of safety criteria in its
specification. Note that the safe state space may vary with time.

In most networked control systems, however, it is not sufficient to just main-
tain the system in its safe state space. For example, in the above traffic control
system, a safe response to a software failure on one car, would be to stop all
cars. This would ensure safety, but it is not the desired response. Hence, a key
requirement is to maintain safety without affecting the operation of the system.
This can be captured with the following notions. Operational capability is the
ability of a system to achieve the goals assigned to it. By operational integrity,
we will mean the property that the state of the plant in a system is always main-
tained in its safe state space with minimum effect on the operational capability
of the system.

2.2 Changes in networked control systems

Networked control systems are subject to various changes during their operation.
The changes usually affect one or more components directly. If not handled
properly, the changes could further disrupt the operation of other dependent
components. Hence, the key challenge in maintaining operational integrity is to
minimize the impact of such changes.

The changes occurring in networked control systems can be classified as vol-
untary or involuntary. Voluntary changes are intentionally introduced by a sys-
tem operator. Component upgrades and configuration changes constitute the
principal voluntary changes and may affect one or more of the following:

- Syntax: An upgraded component may require syntactic changes such as
additional functions or parameters in a service interface. For example, a new
controller may require additional information in the updates that it gets
from the sensors.

- Semantics: Changes in operational semantics may be triggered by changes
in operating conditions or upgrades. For example, on detecting a safety vi-
olation, the respective controller components may communicate directly to
avoid it. Such fault avoidance algorithms may need to be upgraded as the
system evolves.

- Communication: Components may need to be added to established com-
munication channels at run time. For example, if updates from a sensor
are too noisy, then a filter may need to be added to reduce this noise. How-
ever, this should not require the controller to re-establish the communication
channel to the sensor.
Components may also want to change quality of service parameters of com-
munication channels. For example, components in wireless networks may
want to trade-off reliability for lower delay as shown in [2]. Changes in net-
work topologies could also affect connections between components.

- Timing: Changes in operating conditions could cause related changes in
timing requirements. For example, the controller may need updates at a
higher frequency when approaching critical conditions.

- Location: Components may be migrated for better utilization of resources.
For example, suppose feedback from a sensor is a lot more frequent than
any other communication involving a controller component. The component
could then be migrated to the same node as the sensor to reduce network
communication traffic.

Involuntary changes are caused by events in the operating environment be-
yond operator control. These include the following:

- Passive failures: These include component crashes due to exceptions, node
faults, and failure in communication links.

- Active failures: These are usually caused by mis-configured or erroneous
components. Another source of active failures is operator mistakes during
system reconfiguration.

- Byzantine failures: These are caused by malicious components and are
usually the hardest changes to cope with.

To maintain operational integrity, the above changes must be handled dy-
namically, and their impact on the system's operational capability must be min-
imized.

Notably, active and byzantine failures require semantic information and have
to be handled by application specific mechanisms. However, as we demonstrate
in the rest of the paper, the other changes can be handled in middleware.

3 Service continuity

This section considers the problem of maintaining operational integrity in net-
worked control. To address this, support for service continuity is presented as
the main requirement in middleware. Various issues involved in providing such
support are discussed, and their influence on design choices in Etherware are
presented.

3.1 Maintaining Operational Integrity

Middleware based systems are typically developed as a set of coordinating com-
ponents that interact by providing and consuming services. For networked con-
trol systems in particukr, some of these services may be critical for the opera-
tion of a component. For example, the controller in Figure 1 depends on getting
feedback from the sensors. Controls are usually discrete and calibration is im-
perfect. Hence, any changes in this feedback service could result in serious faults
in the operation of the controller. Hence, continuity of the feedback service is
imperative to the operation of the controller. Similarly, the actuators depend on
receiving controls from the controller.

Apart from topology reconfiguration, most of the changes listed in Section
2.2 occur at one or more related components. There is little that can be done in
middleware to prevent such changes from affecting the respective components.
However, the impact of these changes on other dependent components can be
minimized. For example, an exception raised in a controller component may
cause it to terminate. However, if it is restarted correctly and within a specified
time-bound, this fault will not seriously affect the operation of the rest of the
system. Such support can be easily provided in middleware. However, the possi-
ble support in middleware may be more restricted in pathological cases such as
active and byzantine failures. In such situations, typically, application specific
mechanisms are also necessary.

In general, apart from acute failures requiring application specific mecha-
nisms, the impact of most changes can be limited to associated components by
suitable support from middleware. This mainly consists of maintaining conti-
nuity of services consumed and provided by the affected components. Hence,
support for service continuity is the primary feature required in middleware for
maintaining operational integrity in networked control.

3.2 Design considerations for Service Continuity

Networked control systems have fairly strict safety requirements, and so, compo-
nents have to respond to changes as soon as possible. For example, on detecting
a safety violation, a controller component may not be able to wait for an ac-
knowledgment from another remote component before it decides to take some
safe action. On a wireless channel in particular, delays can be fairly large due to
interference and fluctuating channel conditions. Hence, to maintain operational
integrity, components must be able to operate asynchronously.

Another important consideration is the presence of dependencies in push-
based communication channels. For example, the controller cannot wait for the
updates from the sensor before sending controls to the actuator. In particular,
updates may be delayed or lost due to communication failures in a wireless
link. Synchronous communication would require such components to be multi-
threaded, or use a fairly complex design involving poller objects for each sensor.
Asynchronous operation, on the other hand, eliminates this source of complexity.
Based on these considerations, Etherware has been developed as an asynchronous
event based middleware.

Event based communication requires a specification of event format. Support
for dynamic changes in syntax requires this specification to be flexible and exten-
sible. Service continuity requires this specification to be backward compatible.
Based on these requirements, we have used XML [5] as the language for events.
All communication in Etherware is through events, which are well-formed XML
documents with appropriately defined and extensible formats. For platform in-
dependence and due to availability of support for XML, Etherware has been
implemented using Java.

Key components may terminate due to voluntary upgrades or involuntary
failures. To maintain operational integrity, components need to be restarted and

operational within application specified deadlines. For example, if a controller is
restarted, it should know the current state of the plant, as this information may
not be entirely available from sensor feedback. Check-pointing is a commonly
used technique to address this requirement. Necessary state is periodically check-
pointed so that components can be restarted with reasonably current state. To
support this, check-pointing has been closely integrated with Etherware design
and is provided as a basic service.

Components typically maintain several communication channels with other
components. For service continuity, restarting or updating such components
should not require these channels to be re-established. Consequently, commu-
nication channels should be maintained despite such changes. This is also sup-
ported in Etherware. In particular, identifiers for communication channels can
be saved as part of check-pointed state. This allows restarted or upgraded com-
ponents to continue using previously established channels. This also provides
communication continuity to other components during these changes.

The necessity to support efficient components restarts has also motivated
another basic design choice in Etherware. All components on a given node are
managed by a single kernel process With separate threads for components if
required. Further, services provided by the middleware also need to be easily
restartable and upgradeable. Moreover, invariant aspects of the middleware that
cannot be changed dynamically, have to be minimized for maximum flexibility.
This has motivated us to adopt a micro-kernel [20] based design for Etherware.
This philosophy of flexibility has also resulted in the development of a bare
minimum functional interface for components to interact with the middleware.
For flexibility and uniformity, all interaction with middleware services is event
based.

As we show in the remaining sections, the above design choices have Enabled
a relatively simple Etherware architecture that provides service continuity by
tolerating changes listed in Section 2.2.

4 Etherware

This section describes Etherware, our middleware for networked control. The
programming model and the architecture of Etherware are presented. Mech-
anisms for supporting service continuity in Etherware, in the presence of the
changes described in Section 2.2, is detailed.

4.1 Etherware Programming Model

Etherware is an asynchronous event-based middleware. Components communi-
cate by exchanging events which are XML documents, as noted in Section 3.2.
Etherware provides a hierarchy of classes that are used to manipulate theSe doc-
uments. The root of this hierarchy is the EtherEvent class that provides various
primitives to manipulate the underlying XML document. AppUcation defined
events are required to be subclasses of EtherEvent.

Two basic problems attending event delivery in distributed systems are dis-
covery and identification of destination components. The identification problem
is solved in Etherware by associating a globally unique id, called a Binding, to
each component. The discovery problem is solved by associating profiles to ad-
dressable components. Each component that needs to be addressed, registers a
profile with the middleware.

A profile describes the set of services that a component provides. For ex-
ample, a profile for a vision sensor could specify that the sensor is a gray-scale
camera that covers the region between the points (0,0) and (100,50) in an ap-
propriate coordinate space. Suppose a car controller knows the location of its
car to be within coordinates (25,37) and (45,52). It could use this information to
connect to a relevant vision sensor using an appropriately defined profile request.
Etherware would then match this profile with the profile of the Vision Sensor
and forward the connection request to it. Note that the car controller need not
specify the type of camera, as this is irrelevant to the service it needs. In general,
suitable matching rules have been defined to match profiles.

All EtherEvents have the following three XML tags:

- Profile: This identifies the recipient of the event. A profile can be a service
description as above or the globally unique Binding of a component.

- Content: This represents the contents of the event. All appUcation specific
information is contained in this tag.

- Time-stamp: Each EtherEvent has a time-stamp associated with it. As
an event moves from one node to another, the time-stamp is automatically
translated to the local time of the destination.

By default, EtherEvents are delivered reliably and in order. However, there
may be event streams that need to be delivered using other specifications. To
identify and manipulate a stream of events as a separate entity, Etherware in-
troduces the notion of an EventPipe. A component can open an EventPipe to
another component and send events through it. EventPipes have settings that
can be used to specify how events are delivered through them. For example,
the car controller can tolerate a few lost sensor updates for lower delay, but has
no use for old updates. Hence, the vision sensor could open an EventPipe to
the car controller requesting unrehable in-order delivery. This means that events
along this pipe will not be retransmitted if lost, and events arriving late will be
discarded.

It may be necessary to modify events in an EventPipe in response to changes
in operating conditions. For example, updates from the vision sensor could get
noisy due to bad lighting conditions. We should be able to filter out this noise
without having to change the sensor or the controller. Etherware supports this
by adding Filters to EventPipes dynamically. Figure 2 shows the effective con-
figuration after a Kalman filter has been added to the event pipe between the
vision sensor and the car controller. Filters can also be added to intercept all
events sent to or received by a component.

A component in Etherware is called an EventHandler, as it operates by pro-
ducing and consuming events. The design of a generic EventHandler is shown in

Vision Sensor Kalman Filter

Event Pipe

"-d

Car Controller

Filter

Fig. 2. Filters for EventPipes

1,1,1.1 I, I. I'. I.
'i"» ■' I"', "i 1]—1—',' I'' I' I bli3±T

EventHaodler

Fig. 3. Design patterns for EventHandlers

Figure 3. This is based on several design patterns [8] that address issues raised
in Sections 2.2 and 3.2, where "a design pattern is a solution to a problem in
a context" [8]. In software development, several problems may have a common
recurring theme. Design patterns represent solutions to such problems that ex-
ploit the recurring theme. However, the solutions need to elaborated based on
the context of the given problem. We now consider the various problems to be
solved in the design of EventHandler and describe how these are addressed using
the appropriate design patterns:

- Memento: Support for restarts and upgrades requires the ability to capture
appUcation state. This is solved by the Memento pattern, wherein component
state can be check-pointed and restored on reinitialization.

- Strategy: Service continuity requires the ability to replace components
without disrupting service. In particular, if the functional interface used to
communicate with the component is invariant, then EventHandlers can be
replaced dynamically. In this case, the strategy pattern in used in conjunc-
tion with the Memento pattern.

- Facade: Interaction with various services in the middleware usually requires
a component to invoke different sub-systems. This may lead to unnecessary
dependencies between the component and middleware sub-systems. This is
eliminated by using the Facade pattern to provide a uniform middleware
service interface for the components.

EventHandlers can be active or passive. Passive EventHandlers do not have
any active threads of control. They only respond to incoming events by process-
ing them appropriately and generating resulting events if any.

The interface for a passive EventHandler is as follows:

interface PassiveEventHandler {
/** Initialize the event handler with a given memento */
public EtherEventList initialize(EtherEvent memento);

/*♦ Process a given event */
public EtherEventList processEvent(EtherEvent event);

/** Terminate process and return a memento if any */
public EtherEventList terminate();

> ,

The memento of an EventHandler is also defined as a sub-class of EtherEvent.
When EventHandlers are instantiated or restarted, the first function called is
mitializeQ, whose parameter is its memento. This provides a uniform mech-
anism to initialize as well as restart components. On receiving an EtherEvent
addressed to this EventHandler, the function processEventQ is called. For ter-
mination, upgrade, or migration, the function terminateQ is called. All three
functions can return one or more EtherEvents addressed to other EventHandlers
or the middleware itself. The terminateQ function, in particular, may return a
memento event, representing a check-point for reinitialization.

Active EventHandlers have one or more active threads of control. They can
generate events based on activities in their individual threads of control. The
interface for an active EventHandler extends PassiveHandlerlnterface by in-
cluding an activateQ function. This is called to activate additional thread(s) in
the EventHandler.

4.2 Etherware Architecture

The architecture of Etherware is based on the micro-kernel concept, as shown in
Figure 4. The Kernel represents the minimum invariant in Etherware. All other
services are implemented as EventHandlers.

The Kernel manages all EventHandlers in a given process. In the current
implementation, we have one Etherware process per node. The basic function of
the Kernel is to deliver events between its (local) EventHandlers. The Kernel also
exposes a service interface, which can be used to manipulate the EventHandlers
managed by it. The Kernel has a Scheduler thaX is responsible for scheduling all
events and threads. The Scheduler can be replaced dyiiamically.

As illustrated in Figure 4, each EventHandler is encapsulated in its own Shell.
A Shell presents a facade to the EventHandler and provides a uniform interface
for it to interact with the rest of the system. Shells also encapsulate EventHandler

SheU

JE^^lffit^er'.

Shell

Events Events

KERNEL

Fig. 4. Architecture of Etherware

specific information such as configurations of EventPipes. Activities involved in
component restart, upgrade, and migration are also handled in Shells.

AH other functionality in Etherware is provided by service EventHandlers.
The following basic services are used during normal operation of Etherware.

- Profiler: The Profiler is used to register and look-up profiles of Even-
tHandlers. It is equivalent to a name service.

- RemoteBus: The RemoteBus encapsulates all communication with remote
nodes over the network. This includes details such as IP addresses, ports,
and transport layer protocols. All EtherEvents addressed to remote Even-
tHandlers are forwarded by the Kernel to the RemoteBus. The RemoteBus is
an active EventHandler with separate threads to receive events from remote
nodes.

- Timer: The Timer service is used to translate time-stamps of EtherEvents
as they are transmitted from one node to another. To implement this, the
Timer is added as a Filter for all events that are sent to and received from
the RemoteBus. Time translation is based on computing clock offsets using
the Control Time Protocol [9].

- Ticker: The Ticker is mostly used by passive EventHandlers for periodic
activations. For example, the car controller operates at 10 Hz and has been
implemented as a passive EventHandler. For periodic activation, it registers
with the Ticker to receive periodic tick events at 100ms intervals. The Ticker
can also send one-time alarm events. The Ticker is an active EventHandler.

Since the above services have been implemented as EventHandlers, they can
also be restarted or updated dynamically.

4.3 Etherware support for Service Continuity

We now consider how Etherware provides service continuity to support most of
the changes fisted in Section 2.2.

- Restarts and upgrades: In networked control, it is necessary to inform
appUcations about changes such as component upgrades or migration. For

example, if a controller is upgraded, the new controller must know about
the current state of the plant. This requires the state of the old controller
to be check-pointed before termination. Similarly, migration of a controller
component would involve changes in loop delay. This would require changes
in parameters such as control gain. Hence, if the controller is migrated with-
out such knowledge, then the plant may become unstable, and thus violate
operational integrity of the system. To support this, the EventHandler in-
terface described in Section 4.1 has a terminate^) function, which is called
to check-point state and inform the EventHandler about possible upgrade
or migration.
Syntax changes: As discussed in Section 4.1, the functional interface for
EventHandlers is simple, uniform, and not expected to change during most
operation. Hence, the key source of syntactic change during component
upgrade is the formats of events that are consumed and produced by it.
However, since event formats are specifications of XML documents, format
changes are easily supported. Further, interaction with the underlying XML
documents is usually abstracted away by defining appropriate subclasses of
EtherEvent. This enables backward compatibility to be addressed using in-
heritance.
Semantic changes: Service continuity during semantic changes requires a
formal specification of application semantics. We are currently working on a
formal specification language for Etherware applications.
Communication chsinges: Changes in communication topologies are sup-
ported by Filters and check-point based migration of EventHandlers. Events
can be intercepted by defining appropriate Filters. The addition and dele-
tion of Filters does not require the sender or the receiver of the events to be
involved. Similarly, migration of EventHandlers does not require communi-
cating components to be informed.
Timing changes: Changes in timing requirements of event delivery are sup-
ported by the use of EventPipes. As indicated in Section 4.1, timing behavior
of individual threads can be manipulated using the AbstractScheduler in-
terface. However, Etherware does not yet support hard real-time deadlines,
as our target application operates in soft-real time.
Location changes: Location transparency is supported by globally unique
Bindings of EventHandlers.
Component failures: Passive failures such as component exceptions are
supported by check-pointing and restart mechanisms in Shells, as noted in
Section 4.2. A node failure, on the other hand, triggers appropriate excep-
tion events informing remote components connected to EventHandlers on
the failed node. These exceptions can be used to handle node failures in ap-
phcation code. For example, all Etherware services described in Section 4.2
are designed to tolerate node restarts.
Other failures: Active and Byzantine failures involve appUcation specific
mechanisms and comprehensive support for such changes has not yet been
provided in Etherware.

The performance of these mechanisms has been tested through experiments
on a prototype traffic control apphcation. Tfie details are presented in following
sections.

5 Prototype System

This section presents the prototype traffic control system that has been im-
plemented using Etherware. Issues involved in co-design of Etherware and the
application are considered.

Feedback Supervisor

Vision Sensor <' 1 Trajec tor

Car Controller ^^~^
1 Controls

Actuator

(a) Traffic Control Testbed (b) Testbed design

Fig. 5. A Prototype Networked Control System

5.1 Traffic Control Testbed

Figure 5(a) illustrates our traffic control testbed, which is a prototype networked
control system. This system consists of a set of remote controlled cars that are
driven on a track. Each car is controlled by a dedicated laptop via radio control.
A car is driven by controlling its nominal speed and steering angle. Feedback
is provided by two ceiUng mounted cameras that cover different overlapping
portions of the track. The video feed from these cameras is processed by dedi-
cated desktops to track the cars. The computers can communicate using wired
or 802.11 wireless networks.

A basic design for the testbed, with three layers of control, is shown in Figure
5(b). Based on desired trajectories of different cars, the supervisor provides goals
to the individual car controllers. The goals are sequences of timed locations on
the track, called way-points. The individual car controller computes controls to
drive the car along these way-points, and sends them to the associated actuator.
The actuator controls the car according to the given controls. The vision sensors
provide feedback on positions and orientations of cars to the supervisor and the
controllers.

A basic safety criterion for this system is to avoid collisions between cars.
While the supervisor determines way-points to avoid collisions, numerous changes
could still cause collisions to occur. For example, car collisions could occur due
to failure of the vision sensor, the controller, or the communication link between
them.

We can apply the concepts introduced in Section 2.1 to model this system.
The plant of a car controller is the car that it controls. The state variables of the
plant are the location, orientation, speed, and steering angle of the car. Similarly,
the plant of the supervisor is the set of cars that it supervises. In the testbed,
vision sensors monitor locations and orientations of cars. However, a car's speed
and steering angle are not monitored. Given this model, operational integrity
of the system could require that a minimum distance be maintained between
locations of cars, without affecting the ability to control the cars.

Supervisor

\
Control
Buffer

i
Vision Sensor

St^c
Estimator

Controller

1
 ♦

Control
Buffer

Actuator

Fig. 6. Modified traffic testbed design

5.2 Issues in Co-design

Networked control systems operate under highly varying conditions. In partic-
ular, wireless channels are prone to interference, noise and fading. This leads
to unpredictable packet delays and unreliable links. Such problems cannot be
entirely addressed in middleware. Rather, maintaining operational integrity dur-
ing such changes requires application aware mechanisms. For example, in Figure
5(b), a wireless link between the vision sensor and car controller could be lost for
a couple of seconds. To maintain operational integrity, the car controller must
still be able to control the car using open loop control.

To operate over a wireless network, we need to modify the testbed design of
Figure 5(b) to tolerate unpredictable delays and link failures. Figure 6 presents
our modified design. The car controller uses a local state estimator to tolerate

noise and jitter in updates from the vision sensor. The state estimator uses a
Kalman filter [12] to estimate the current state of the car based on sensor updates
and controls sent to the actuator. The estimator can continue to estimate the
state of the car even if the link to the vision sensor goes down temporarily. This
allows the car controller to tolerate link and component failures in its connection
to the vision sensor.

The actuator uses a local control buffer to tolerate changes in the controller.
The controller sends a sequence of commands to the actuator every 100 ms.
Each sequence has commands for the next two seconds. Hence, the actuator can
continue operating the car for two geconds before it needs a new sequence of
commands from the controller. However, since the sequence of future commands
from the controller is based on imperfect calibration and discrete controls, the
safety deadline is usually lesser than two seconds. A similar control buffer isolates
the car controller from changes in the supervisor.

The key point is that, the above design is a result of the necessity to main-
tain operational integrity despite delays, faults, and link failures. These are part
of the system operating conditions and must be addressed by application de-
sign. Middleware support alone would hot be able to provide necessary service
continuity without such mechanisms in the application.

Based on the flexibility afforded by this design, the testbed has been imple-
mented using soft real time control. This also allows Etherware to operate over a
general purpose operating system without requiring support for hard deadlines.
Consequently, we have focused more on mechanisms, described in Section 4; to
support service continuity in the presence of faults and software upgrades. As
demonstrated in Section 6, the loss of service due to software restarts or up-
grades is minimized by this support, and the involved transients can be easily
tolerated by our application.

6 Evaluation

This section presents two experiments evaluating the performance of Etherware
mechanisms for service continuity. The first experiment tests an involuntary
change involving a component restart, and the second evaluates a voluntary
change represented by a component upgrade. Observed results are related to
Etherware mechanisms from Section 4.

6.1 Experimental Configuration

From Figure 5(b), we see that the controller is the most constrained component
in the traffic testbed.The controller operates under the tightest deadUnes and
has the highest interconnection complexity in the system. Consequently, changes
affecting the controller represent the greatest stress that can be applied to this
system. Hence, in the following experiments, we will consider restarting and
upgrading the controller while the system is operating. For both experiments,
the desired trajectory of the car is the oval shown in Figure 7(b).

Observer ■>,_ Trajectory

k
\ Fee dback ^^ Supervisor

Vision Sensor <r Ttajed

^--^ Car Controller

Controls

Actuator 600 1000 1S00 2000
X oeordlnats (mm)

(a) Modified testbed design (b) Trajectory

Fig. 7. Experimental setup

Figure 7(a) shows the configuration used to conduct the experiments de-
scribed in this section. As the controller itself is being affected, we cannot use
it to record the experimental trace. Hence, an Observer has been added to the
testbed design of Figure 5(b). It monitors the desired trajectory, ahd the actual
position of the car based on vision upgrades, and produces the traces that we an-
alyze. The Observer and the Supervisor were executed on the same node, while
all other components were executed on separate computers. All communication
was on a dedicated wired network.

6.2 Controller Restarts

In this experiment, the controller was restarted several times as the car was
being driven along the trajectory shown in Figure 7(b). Faults were injected at
random by performing an illegal operation (divide by zero) in the Controller.
Such a fault caused the Controller to raise an exception and be restarted by
Etherware.

The observations for this experiment are displayed as the first column of plots
in Figure 8. Figures 8(a) and 8(c) plot the x and y coordinates of the car posi-
tion, in millimeters, as a function of time. The dotted lines indicate the desired
trajectory. The deviation of the actual car positions from the desired trajectory,
as a function of time, is shown in Figure 8(e). The plots are time correlated and
a vertical line passing through the three plots identifies the x and y coordinates,
as well as the deviation, at a given point in time. Restarts are indicated by the
pointers in Figure 8(e), and the accompanying numbers indicate, in millisec-
onds, the time for restart. These are timestamps at the Observer and include
communication and synchronization times between the restarted Controller and
the Observer.

(a) Observations ofX-co (restarts) (b) Observations of X-co (upgrade)

(c) Observations of Y-co (restarts) (d) Observations of Y-co (upgrade)

— Deviation (mm)
7 TVneofoonlrollardown
A Time of oontroller up
■ - Elapaed time to woowr (m«)

— Deviation (mm)
V Oldoontrollerdown
A Nftwoontratlerup

- - Elapaed time to reoover (me)

(e) Error in trajectory (restarts) (f) Error in trajectory (upgrade)

Fig. 8. Experimental Results for Controller restarts and upgrade

During the first three iterations of the oval, the Controller was operating
normally and we see that the car position tracked the desired trajectory fairly
well. The first restart occurred at about 70 seconds into the experiment, and was
followed by two other restarts in the next 20 seconds. The last three faults were
also handled by the restart mechanisms in Etherware. We see that the error in
the car position during these restarts was within the system error bounds during
normal operation.

Two of the Etherware mechanisms described in Section 4 contributed to
the quick recoveries. First, the Shell intercepted exceptions thrown due to the
Controller faults, and restarted it without affecting the EventPipe connections
to the other components. Second, before termination, the Controller state was
check-pointed according to the Memento pattern, and this check-point was then
used for reinitialization.

To illustrate the impact of these two mechanisms, we restarted the Ether-
ware process managing the Controller at about 100 seconds after the start. We
see that the restart of Etherware and the Controller took about three seconds,
during which the car position accumulated a large error of about 0.8 meters.
This illustrates the necessity for efficient restarts. Furthermore, even though the
Controller restarted after three seconds, additional error was accumulated be-
fore recovery. This was so because, the Controller had to reconnect to the other
components, rebuild the state of the car, and bring it back on track. This is the
improvement that has been achieved by the check-pointing mechanism.

6.3 Controller Upgrade

In the second experiment, we tested the performance of software upgrade mech-
anisms in Etherware. The observations for this experiment are shown as the
second column of plots in Figure 8. The format of these plots is similar to the
plots of Section 6.2.

The car is initially controlled by a coarse Controller that operates myopically.
Etherware is then commanded, at about 90 seconds after the start, to upgrade
the coarse Controller to a better model predictive Controller. We can easily see
the improvement in the car operation. The involved transients are within the
system error bounds as well.

This functionality is due to three key Etherware mechanisms from Section 4.
First, the Strategy pattern allows one Controller to be replaced by another with-
out any changes to the rest of the system. Second, the Shell is able to upgrade
the Controller without affecting the connections to the other components. Fi-
nally, the Memento pattern allows the coarse Controller to check-point its state
before termination. This is then used to initialize the new Controller. The first
mechanism allows for simple upgrades, while the other two mechanisms mini-
mize the impact of the upgrade on other components and the car operation, as
shown in Section 6.2.

These experiments clearly demonstrate the need for, and the effectiveness of,
Etherware support for service continuity.

7 Related Work

This section presents an overview of related earlier work in this area.
Simplex [19] is an elegant architecture that supports safe dynamic upgrades

of control software. Simplex can tolerate timing and semantic faults, and pro-
vides run-time error containment using process address space separation. How-
ever, component restarts or upgrades still require communication channels to
be re-established, and this may affect operational integrity. Support for such
functionality could be provided by Etherware as it maintains channels such as
EventPipes in the presence of such changes. Designing a class of monitored
EventHandlers, based on the Simplex architecture, is an aspect of our current
research.

Fault-tolerant CORBA (FT-CORBA) [6] is the primary OMG specification
that addresses fault tolerance in distributed systems. The key mechanism in FT-
CORBA is to support fault tolerance through redundancy of entities. However, a
key problem with this model is that, since replicas execute the same algorithms
and have the same inputs, they will have similar failures due to application
errors. Hence, safe component restarts is also necessary to support such failures.
Some of the other problems that need to be addressed, before FT-CORBA can
be used for distributed real-time systems, are considered in [16].

Software frameworks and middleware for networked control in general, are
areas of active research. Open Control Platform (OCP) [21] is a Real-Time
CORBA [17] based middleware for reconfigurable control systems. Currently
OCP is being developed as a software platform for unmanned aerial vehicles
(UAVs). While OCP supports service continuity during component and service
re-configuration, mechanisms to tolerate faults in application software are not
provided. Detailed surveys of related efforts are presented in [18] and [10].

As noted in Section 4.3, support for semantic changes requires a formal spec-
ification of application semantics. The development of a formal specification
language for Etherware is part of current research. On a related note, the pro-
gramming model of Etherware is similar to the Actor model of concurrent com-
putation [1]. Like Actors, EventHandlers communicate by sending and receiving
events which are buffered in Etherware until consumed. They both have glob-
ally unique-ids and modifiable behavior. Based on this. Actors could be used to
model and analyze the behavior of Etherware based systems.

8 Conclusions

We have focused on supporting operational integrity in networked control sys-
tems. Possible changes occurring in such systems have been classified and illus-
trated. Service continuity during these changes, has been introduced as a key
middleware feature for maintaining operational integrity.

We have presented design considerations in Etherware, our middleware for
networked control, and shown how these support service continuity during vari-
ous changes. The performance of Etherware, during some of these changes, has
been evaluated through experiments on a traflSc control testbed.

References

1. Agha, G.: Actors - A Model of Concurrent Computation in Distributed Systems.
MIT Press, Dec 1986

2. Baliga, G., Graham, S., Sha, L., Kumar, P. R.: Etherware: Domainware for Wireless
Control Networks. To appear in Proceedings of ISORC 2004

3. Coulson, G.: What is reflective middleware?. IEEE Distrib. Syst. Online 2, 8, Dec.
2001

4. Cugola, G., Jacobson, H.-Arno.: Using publish/subscribe middleware for mobile
systems. ACM SIGMOBILE Mob. Comp. and Comm. Review, 6, 4, Oct 2002, 25-33

5. Extensible Markup Language (XML) 1.0 (Second Edition). W3C - World Wide Web
Consortium, Oct 2002

6. Fault Tolerant CORBA Specification, Vl.O. Object Management Group (OMG)
adopted spec

7. Fleury, M., Reverbel, F.: The JBoss Extensible Server. Middleware 2003
8. Gamma, E-, Helm, R., Johnson, R., VUssides, J.: Design Paterns - Elements of

Reusable Object-Oriented Software. Addison-Wesley Pub Co
9. Time in general-purpose control systems: The Control Time Protocol and an ex-

perimental evaluation. Submitted to Proc. of the 43rd IEEE Conf. on Decision and
Control, Dec 2004

10. Heck, B., S., Wills, L., M., Vachtsevanos, G., J.: Software Technology for Imple-
menting Reusable, Distributed Control Systems. IEEE Control Systems Magazine,
23, 1, Feb 2003

11. Kon, F., Costa, F., Blair, G., Campbell, R. H.: The case for reflective middleware.
Communications of the ACM, v.45 n.6, June 2002

12. Kimiar, P., R., Varaiya, P.? Stochastic Systems - Estimation, Identification and
Adaptive Control. Prentice-HaU, Inc, 1986.

13. Mascolo, C, Capra, L., Emmerich, W.: Mobile computing middleware. Advanced
Lectures on Networking, 20-58

14. Pietzuch, P. R., Shand, B., Bacon J.: A Framework for Event Composition in
Distributed Systems. Middelware 2003

15. Popovici, A., Gross, T., Alonso, G.: Dynamic Weaving for Aspect Oriented Pro-
gramming. 1st Intl. Conf. on Aspect-Oriented Software Development, Apr 2002

16. Gokhale, A., Natarajan, B., Schmidt, D., C, Yajnik, S.: DOORS: Towards High-
performance Fault-Tolerant CORBA. Proc. of the 2nd Intl. Sym on Dist. Objects
and Appls (DOA '00)

17. Real-Time CORBA Specification Version 2.0. OMG, Inc, Nov 2003
18. Samad, T., Balas, G. (Eds): Software-Enabled Control - Information Technology

for Dynamical Systems. IEEE Press, 2003
19. Seto, D., Krogh, B., Sha, L., and Chutinan, A.: Dynamic control system upgrade

using the simplex architecture. IEEE Control Systems, 18(4):72-80, 1998
20. Silberschatz, A., Galvin, P. B., Gagne, G.: Operating System Concepts (Sixth

Edition). John Wiley k Sons, Inc, June 2001.
21. Wills, L., Sander, S., Kannan, S., Kahn, A., Prasad, J., V., R., Schrage, D.: An

Open Control Platform for Reconfigurable, Distributed, Hierarchical Control Sys-
tems. Proc. Digital Avionics Systems Conf, Oct 2002.

